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Abstract: The Sencell sensor uses glucose-induced changes in an osmotic pressure chamber for con-

tinuous glucose measurement. A final device shall have the size of a grain of rice. The size limiting

factor is the piezo-resistive pressure transducers inside the core sensor technology (resulting chamber

volume: 70 µL. To achieve the necessary miniaturization, these pressure transducers were replaced

by small (4000 × 400 × 150 nm3) nano-granular tunneling resistive (NTR) pressure sensors (chamber

volume: 750 nL). For benchmark testing, we filled the miniaturized chamber with bovine serum

albumin (BSA, 1 mM) and exposed it repeatedly to distilled water followed by 1 mM BSA solution.

Thereafter, we manufactured sensors with glucose testing chemistry (ConcanavalinA/dextran) and

investigated sensor performance with dynamic glucose changes between 0 and 300 mg/dL. Evalua-

tion of the miniaturized sensors resulted in reliable pressure changes, both in the BSA benchmark

experiment (30–35 mBar) and in the dynamic in vitro continuous glucose test (40–50 mBar). These

pressure results were comparable to similar experiments with the previous larger in vitro sensors

(30–50 mBar). In conclusion, the NTR pressure sensor technology was successfully employed to

reduce the size of the core osmotic pressure chamber by more than 95% without loss in the osmotic

pressure signal.

Keywords: continuous glucose monitoring; osmotic pressure; NTR sensor; FEBID; implantable

glucose sensor

1. Introduction

Measuring glucose levels is part of the multiple daily routine procedures for patients
with diabetes mellitus on insulin therapy. On the basis of the measurement results, millions
of therapy decisions (e.g., regarding the insulin dose to be injected) are made every day
worldwide, which can have an influence on the patient’s short-term and also long-term well-
being [1]. In addition to the spot glucose measurements, various systems for continuous
glucose measurement (CGM) have become available in the last two decades. CGM systems
are devices that measure glucose levels in interstitial fluid in the subcutaneous tissue based
on glucose-oxidase measurement technology by means of needle-based sensors; usually, the
measurement result is provided every five minutes and transmitted to a receiving handheld
or smartphone. The first CGM device was introduced by MiniMed at the beginning of the
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millennium. It proved to be functional for three days and needed to be calibrated several
times during the day to have acceptable accuracy [2]. Since then, technology has improved
massively, and better measurement accuracy and prolonged duration of use have made
CGM with needle sensors a frequently used diagnostic tool for diabetes management of all
patients with type 1 and also of many of those with type 2 diabetes mellitus [1].

CGM systems provide users with much more data about their glucose course, which
also enables the usage of different parameters to characterize this (e.g., Time-in-Range [3]).
In addition, specific threshold values can be defined, and an alarm is triggered if glucose
levels exceed these cut-offs. The use of CGM systems has hence resulted in a reduced
frequency of hypoglycemic and hyperglycemic events, an overall improvement of glycemic
control, and an improved quality of life [4–13]. However, the current glucose sensors need
to be replaced every 10 to 14 days, and they have interference and accuracy issues [14–16].
In consequence, there is still a medical need for the development of small glucose sensors
with improved measurement properties. Ideally, such sensors would be implanted and
can be used for long time periods. They should be economically affordable and should not
have a significant environmental impact, as usage of current CGM systems generates a lot
of (plastic) waste.

One approach to reach this goal is the development of Sencell (Lifecare AS, Bergen,
Norway), a small and implantable glucose sensor employing wireless energy and data
transfer. This sensor utilizes osmotic pressure changes in a closed chamber induced by
increasing and decreasing glucose concentrations in the interstitial fluid outside of the
device. The underlying osmotic chamber technology was presented a decade ago by
Johannesen et al. [17]; however, their prototype device was too large (5 × 5 × 2 cm3) and
had a too slow response time (45–60 min) to glucose changes to be clinically useful.

The aim of the current development is a glucose sensor with the size of a rice grain, a
response time of maximally a few minutes, and a duration of use of at least 6–12 months.
The final sensor product is planned to be implanted in the subcutaneous tissue at the
forearm underneath a watch-like readout unit. The watch will operate the sensor with
an inductive power supply and a wireless readout. In case of the necessity to remove
the device from the tissue (e.g., at the end of its operations), appropriate (proprietary)
means for an easy location and removal with a minor surgical procedure will be consid-
ered. The development steps undertaken to reach the actual size of the core sensing unit
(1 × 0.5 × 0.25 mm) are described.

2. Materials and Methods

2.1. Measurement Technology

The underlying osmotic pressure technology for the continuous glucose measurement
sensor was published more than a decade ago [17]. In brief, an active fluid with a large
glucose-binding molecule (GBM) and a large glucose-like ligand (GL) are present in a
closed chamber. This is exposed to a fluid with different glucose concentrations and
generates measurable osmotic pressure signals. In a glucose-free solution, the GBM and
the GL form a complex because of the electrostatic binding of the GL to the GBM at a
glucose-specific binding site. When glucose penetrates through a semipermeable (size
exclusion) membrane into the chamber, the GL will go off from the GBM binding sites, as
glucose has a slightly higher binding affinity to the GBM receptor. Subsequently, every
GL molecule freed from the GBM-GL complex enhances the osmotic pressure inside the
chamber. This reaction is fully reversible, and decreasing glucose concentrations on the
outside makes glucose molecules leave the GBM binding site. This allows GBM and GL
to reassemble, and the osmotic pressure declines. There is a linear relationship between
the glucose concentration in the external fluid and the measurable osmotic pressure in the
chamber [17]. The described reversible affinity reaction in the chamber does not consume
any molecules when generating the signal, providing the potential for long-term usage of
the sensor in the body.
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In the last years, wired in vitro prototypes based on this sensing technology have
been developed. The most current version of these used the smallest commercially avail-
able piezo-resistive (PR) pressure transducers to determine the glucose-induced osmotic
pressure changes, resulting in a chamber volume of 70 µL (Figure 1).
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Figure 1. Preclinical prototypes using piezo-resistive pressure transducers (upper line) and the minia-

turized versions employing the core sensing unit with NTR sensors on the nanoscale (lower line).

These devices were used for in vitro experiments and for preclinical proof-of-concept
studies in pigs. A sketch of the experimental animal study setup and an example of the
performance results obtained with these prototypes are provided in Figure 2.

Figure 2. Sketch of the animal study setup and an example for the measurement results after one-point

calibration in comparison to a commercially available CGM system.

However, the prototypes needed to be further miniaturized to be clinically useful. At
this stage, it was not possible to further reduce the size of the sensor chamber because
further miniaturization of the (conventional) PR pressure transducers was not possible
without losing the necessary sensitivity for pressure sensing; a novel measurement principle
was needed.

2.2. Nano-Granular Tunneling Resistive (NTR) Sensors

In 2016, Dukic et al. published a report about the manufacturing process and the
physico-chemical properties of pressure-sensing elements with a size in the nanometer
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range [18]. The sensors were built by means of focused electron beam-induced deposition
(FEBID) using a direct-write technology (Nano3Dsense®, Nanoscale Systems, Darmstadt,
Germany). In brief, an electron microscope was modified with a gas injection system. An
electron beam was directed to the spot of the planned sensor location. From the side, a
metal-organic precursor gas flow was directed to the same spot. In the focus of the electron
beam, previously adsorbed precursor molecules were dissociated, resulting in a permanent
deposit. The deposit microstructure is that of a nano-granular metal if the precursor gas
species is properly chosen [19]. The final size and the structure of the “printed” product
are defined by the software-controlled process and can be adapted as desired.

In the most current glucose sensor, the pressure sensor is located at the base of a
membrane that forms the bottom of the chamber opposite to the upper part, which is
covered by the semipermeable membrane (Figure 3). It closes a small gap between two
gold electrodes. A pressure increase results in movement and straining of the pressure
membrane causing a resistivity change in the sensor element, which is part of a Wheatstone
bridge. This sensing technology allowed for miniaturization of the osmotic pressure
chamber to a volume of 750 nL and to reduce the operating voltage to 100 mV.
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sensor system did not use a pre-amplifier and was operated with a stable 100 mV low-
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Figure 3. Sketch of the osmotic pressure-based glucose sensor indicating the measurement conditions

at low and high glucose concentrations in the interstitial fluid.

For the in vitro and preclinical in vivo experiments, the signal from the sensor system
was directly read out by a voltmeter (Keithley DMM6500, Tektronix, Beaverton, OR, USA).
The sensor system did not use a pre-amplifier and was operated with a stable 100 mV low-
noise voltage regulator system based on an LT3042 chip for analog devices. The recorded
data was saved via a self-written Python code, which also provided a separate window for
real-time data visualization. After the experiment, the data was stored as a standard CSV
file and was further processed with standard analysis software.

3. Results

Osmotic Pressure Benchmark Testing

The functionality of such in vitro sensor prototypes with piezo-resistive pressure sens-
ing was first assessed in a benchmark testing experiment, such that the chamber was filled
with 1 mM albumin in a physiological NaCl solution. Exposing these sensors to distilled
water had previously led to a pressure increase by ~30 mBar, and consecutive exposure to
1 mM albumin solution resulted in a pressure decrease back to baseline (Figure 4A). It is
well established that osmotic pressure is independent of the chamber volume, and using
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the same protocol, the miniaturized albumin-containing sensors provided similar results
when exposed to the same series of solutions (Figure 4B). All experiments were repeated at
least in triplicate confirming this outcome.
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albumin solution to distilled water and 1 mM BSA solution. (A) Results with the laboratory prototypes

using piezo-resistive pressure transducers, and (B) results with the miniaturized core sensing unit

employing NTR sensors.

Based on these results, the miniaturized sensors were now manufactured with inclu-
sion of the active glucose-sensing Concanavalin A/dextran chemistry [17]. When exposing
these sensors to dynamic glucose concentration in the fluid around the sensors, changes by
using an in vitro dynamic CGM test rig [16], similar osmotic pressure changes were seen as
with the previous larger prototypes (Figure 5). Pressure changes were reproducible, and
a linear relationship between the sensor signal and varying glucose concentrations in the
supernatant was observed.

The results of the miniaturized sensors (Figure 5B) show that the signal-to-noise ratio
becomes a bit weaker proportional to the size of the pressure membrane resulting in a more
pronounced variability of the current readout. The increased signals at an (unphysiological)
glucose concentration of 0 mg/dL in the beginning (A) or at the end (B) of the experiments,
respectively, are artifacts induced by the employed standard smoothening filter, which acts
over frequencies (Butterworth filter). An optimized algorithm to address such artifacts will
be developed once human clinical results become available.

The delay between the employed and measured glucose concentrations in the in vitro
experiments is induced by the time required to deliver the programmed glucose levels
through the tubes from the pump to the sensors. After correction for this time shift, a
Parkes-Error-Grid analysis [20,21] (vs. YSI STAT2300 Plus Glucose Analyzer as a reference
method, YSI Inc., Yellow Springs, OH, USA) for the clinically relevant glucose ranges
(50 to 300 mg/dL) confirmed that 100% of the data points were in the non-critical zones
A + B in this in vitro consensus error grid, which is e.g., a regulatory clinical performance
requirement for glucose monitoring devices for prescribed point-of-care use [22]. The
results of this analysis are provided in Figure 6.
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Figure 5. Osmotic pressure changes induced by exposure of the sensors filled with an active 1.5 mM 
Concanavalin A/dextran solution when exposed to 2 mM and 30 mM glucose concentrations in 
physio in solution to distilled water and 1 mM BSA solution. (A) Results with the preclinical 
prototypes using piezo-resistive pressure transducers, and (B) results with the miniaturized core 
sensing unit employing NTR sensors for pressure sensing.

The results of the miniaturized sensors (Figure 5B) show that the signal-to-noise ratio 
becomes a bit weaker proportional to the size of the pressure membrane resulting in a 
more pronounced variability of the current readout. The increased signals at an 
(unphysiological) glucose concentration of 0 mg/dL in the beginning (A) or at the end (B) 
of the experiments, respectively, are artifacts induced by the employed standard 
smoothening filter, which acts over frequencies (Butterworth filter). An optimized 
algorithm to address such artifacts will be developed once human clinical results become 
available. 
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pressure-based sensor in comparison to a reference method (YSI STAT2300 Analyzer, n = 150).

4. Discussion

The principle of osmosis and the use of osmotic pressure to stabilize biological struc-
tures, e.g., biological cells, is a common phenomenon in nature. As can be seen from its
formula—π = I × M × r × T (where “π” is osmotic pressure, “I” is the van’t Hoff factor, “M”
is the molar concentration of the particles in solution, “R” is the ideal gas constant, and “T”
is the temperature in Kelvin)—osmotic pressure does not depend on volume. In theory, the
core sensing technology could hence be miniaturized to a size in the 100-nanometer range
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without loss of the general efficacy and sensitivity. However, there are several reasons
suggesting that it may be better to not push the miniaturization potential to its extremes,
but still be smaller than the size of existing CGM systems in the market. Firstly, an injectable
glucose sensor must still be visible and easy to handle to be inserted in the physician’s
office. Secondly, space is required to attach an ASIC (integrated electronic circuit with
tailored functionality) for energy induction and data transfer to a readout unit. Thirdly, the
manufacturing process must allow the handling of the sensors during a fully automated
mass production process, which includes the filling of the osmotic pressure chamber with
the glucose sensing fluid and sealing of the chamber. Furthermore, it may still occasionally
be required to remove a non-functional sensor from the implantation site at a later stage. In
such a case, the device geometry needs to be adequate so this can be accomplished easily.
Finally, the measurement process for measuring osmotic pressure changes must be reliable
under all circumstances, e.g., changes in environmental pressure or ambient temperature.

While osmotic pressure—as stated above—is independent of volume and is the same
in a 100 L barrel and in a human cell, as long as the temperature and fluid compositions
(molecule type and concentration) inside and outside of the structure carrying the volume
are identical, a size-limiting factor is the method used for translation of the osmotic pressure
change into an electrical signal. In the current glucose sensor version, pressure sensing
has become a key factor in the miniaturization of the sensor. Piezo-resistive pressure
transducers cannot be miniaturized in a similar way as the chamber size (by 99% from
50–70 µL to 500–700 nL). Such transducers lose sensitivity when going below a certain
size [23,24], which limits their usability in glucose sensor development. This situation forced
a search for alternative pressure-sensing options. A comprehensive literature research
helped to identify NTR sensors as a very compelling alternative to achieve the desired
overall small glucose sensor size of a grain of rice. This nanotechnology approach has
several advantages:

The NTR structures can easily be manufactured on a wafer-based large scale by
means of fully automated focused electron beam-induced deposition (FEBID) using a
Nano3DSense 3D printing process, which allows using multi-beam electron microscopes.
In addition, the sensors can be printed on any material. The required operation voltage in
the range of 100 mV or below can easily be delivered by several wireless energy induction
technologies. Finally, the technology and the associated electronic requirements allow
using existing and commercially available solutions for wireless data transfer. In addition,
the results can be displayed in a user-friendly manner, e.g., by an App on a smartphone.

The development of implantable sensors or devices based on non-invasive methods
for the determination of blood or tissue glucose has become a major goal in diabetes
technology during the last decades. The physical methods used to assess specific glucose
signals in blood, tissue, saliva, retinal fluid, and other organs include but are not limited to
(near/mid) infrared spectroscopy, photoacoustic spectroscopy, terahertz spectroscopy, Qu—
Based Resonant Microwave sensing, Raman spectroscopy, radio impedance spectroscopy,
optical rotation, and even combinations thereof [25–27]. Still, non-invasive devices need
a periodically invasive calibration. Similar to the minimally invasive needle sensors, the
information yielded by the applied sensors can be delayed (15–20 min) as blood glucose
needs to be shifted to the interstitial tissue first, which limits the accuracy of devices in
emergency situations [25]. Based on the underlying measurement technology, non-invasive
devices may also suffer from additional sources of interferences, including differences
in skin properties, alterations in microcirculation and individual blood supply, current
medication, and comorbidities. For these and other reasons, most of the non-invasive
technologies have so far not met the required standard of accuracy. However, with the
rapid development of wearable technology and transdermal biosensors, non-invasive
blood glucose monitoring is likely to become more efficient, affordable, robust, and more
competitive on the market [28].

Currently, there is one implantable glucose sensor available on the market, which is
approved to be used for up to 90 days (in the US) or up to 180 days (in the EU), respec-
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tively (Eversense, Senseonics, Germantown, MD, USA). The sensor measures the glucose
concentration in interstitial fluid every five minutes and displays the measurements on a
smartphone [29]. The sensor works with fluorometric glucose assessment and has a size
of 3.3 mm (diameter) × 15 mm (length). It is implanted in the subcutaneous tissue of
the upper arm using local anesthesia by a trained healthcare professional. However, the
sensor signal has a general drift and requires a conventional blood glucose measurement
for calibration approximately every 12 h in order to accurately measure glucose (MARD
8.5% to 11.5%). The CGM system is designed to replace blood glucose measurements
for diabetes treatment decisions, but it needs to become more robust in the measurement
performance to ultimately reach this goal [30–33]. The sensors need to be removed after
maximally 6 months of use, which requires a skin incision and dissection to identify the
sensor in the subcutaneous tissue and its surrounding fibrous capsule. This can be a difficult
procedure, in particular when the sensor has migrated through the tissue during use and
may require assistance from a surgeon [29]. The benefits of this implantable system may
exceed the short-term discomfort following implantation and the small risk of infection,
hematoma, skin irritation, and premature sensor failure [29]; however, further efforts are
needed to improve the performance of this device. There is clearly a medical need for
alternative glucose measurement technologies, which is an encouragement to continue
with the osmotic pressure-based sensor development described before.

In conclusion, miniaturization of the core sensing element of an osmotic pressure-
based continuous glucose sensor to meet the requirements for the planned size of the entire
injectable device was achieved by replacing the former piezo-resistive pressure transducers
with NTR sensors with a size in the 100 nm range. During the clinical development process,
wired versions of the core sensing unit have been built into small needles and are currently
subject to the first clinical experiments in human volunteers.
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